2.5. Avoid Over-Fitting

With the knowledge of how to train and test an ANN, a new approach to training can be introduced. If too much training is applied to a set of data, the ANN will eventually over-fit, meaning that it will be fitted precisely to this set of training data and thereby loosing generalization. It is often a good idea to test, how good an ANN performs on data that it has not seen before. Testing with data not seen before, can be done while training, to see how much training is required in order to perform well without over-fitting. The testing can either be done by hand, or an automatic test can be applied, which stops the training when the mean square error of the test data is not improving anymore.


SourceForge.net Logo